Opinion Dynamics via Search Engines (and other algorithmic gatekeepers)

Fabrizio Germano UPF & Barcelona GSE Francesco Sobbrio LUISS "G. Carli"

AGCOM March 17, 2017

Motivation: Algorithmic Gatekeepers

- Search engines and social media use algorithms to rank info.
- Examples of ranked info via automated algorithms:
 - Search results obtained from a search query in *Google* or *Bing*.
 - News/tweets observed in Facebook or Twitter.
- Ranking algorithms determine what info is relevant for an individual.
 - Search engines & social media as "algorithmic gatekeepers" (Introna, Nissenbaum 2000, Granka 2010, Pariser 2011, Tufekci 2015)

This paper: What are the implications for opinion dynamics?

Main focus: search engines.

This Paper

We develop a theoretical framework where:

- Individuals use a search engine to look for info.
- Stylized structure of a search engine's algorithm.
- Algorithm interacts with individuals' online search behavior.

We then study the following issues:

- Evolution of website rankings
- Individuals' choices over websites
- Individuals' beliefs over given issues (opinion dynamics)
- Efficiency and asymptotic learning.

Main Assumptions: Search Engine's Ranking Algorithm

Ranking parameters are grouped into three main categories:

- **1** *Ex-ante* parameters on website "authority" (e.g., indexing, PageRank)
 - initial ranking
- 2 Usage data (e.g., website clicks, *Facebook* likes, *Twitter* links)
 - dynamic component (popularity)
- Parameters to personalize search results (e.g., users' IP's).
 - personalized vs. non-personalized ranking algorithm.

Main Assumptions: Individuals' Search Behavior

Two main assumptions on individuals' use of search engines:

1) Search cost \Rightarrow Higher ranked websites more likely to be chosen

- As in search diversion lit (Hagiu & Jullien, 2014)
- Empirical (causal) evidence of individuals more likely to choose higher-ranked websites (Glick et al. 2011; Pan et al., 2011; Epstein & Robertson, 2015).

2) Preference for like-minded news \Rightarrow Like-minded websites more likely to be chosen

- As in media econ lit (Mullainathan & Shleifer, 2005, Gentzkow, Shapiro, 2010)

- Empirical (causal) evidence that individuals are more likely to click on like-minded websites (Flaxman et al. 2013; Yom-Tov et al. 2013)

Theoretical Framework

Information structure:

• Binary state of the world, $\left(\frac{1}{2}, \frac{1}{2}\right)$ Bernoulli random variable, $\omega \in \{0, 1\}$

M websites:

- Receive a private signal with accuracy $q > \frac{1}{2}$
- Simply report their own private signal (non-strategic).

N individuals:

- Need to choose an action to match ω (e.g., whether to vaccinate child)
- Receive a private signal with accuracy $p > \frac{1}{2}$
- q > p, i.e., websites have higher accuracy than individuals.
- Individuals (sequentially) use search engine to look for info on ω

Search engine:

- Provides a ranking of websites to each individual *snippets*
- Updates the ranking based on websites' popularity

Incentive Compatible Benchmark

No search cost & no preference for like-minded news

Since q > p:

- *Ex-ante* most informative signal:
 - "website-majority" signal (e.g., mainstream news websites).
- Each individual:
 - rationally "ignores" her private signal
 - chooses any of the K websites reporting the website-majority signal.
- Probability of individual *n* choosing website *m*:
 - $\rho_{n,m} = 1/K$
 - ranking does not matter.

Full Model

Search cost ($\alpha > 0$) & preference for like-minded news ($\gamma > 0$)

• Probability of individual *n* choosing website *m*:

$$\rho_{n,m} = f(r_{n,m}, \alpha, \gamma)$$

- *r_{n,m}*: ranking of *m* at time *n* (↑ *r_{n,m}*: more likely to choose *m*)
- α: search cost
 (↑ α: more likely to choose higher ranked website)
- γ: preferences for like-minded news
 (↑ γ: more likely to choose website confirming prior).

Search Engine & Ranking Algorithm

• Universal ranking algorithm \mathcal{R} :

$$r_{n,m} = (1 - \nu)r_{n-1,m} + \nu \rho_{n-1,m},$$

• The lower ν , the more persistent the ranking is.

• Personalized ranking algorithm \mathcal{R}_{ℓ} :

$$r_{n,m}^{\ell} = \nu_n^{\ell} \rho_{n-1,m} + (1 - \nu_n^{\ell}) r_{n-1,m}^{\ell}, \ \ell = A, B,$$

- ▶ 2 Groups: $A, B \subset N$, such that $A \cup B = N$ and $A \cap B = \emptyset$.
- ▶ $\nu_n^{\ell} = \nu_n^{\ell}(\lambda)$ depends on whether n 1 is in the same group as n.
- λ: extent of search result personalization (i.e., higher λ, lower weight on choices of individuals from ≠ group).

Example

At time t = n:

- A parent gets private signal regarding side effects of vaccines
- Uses search engine to get other info
- Observes the ranking of the websites *r_{n,m}*
- Given ranking, search cost α, and preferences for like-minded websites γ: decides which website to read
- The ranking algorithm updates the ranking of websites according to:

$$r_{n+1,m} = (1-\nu)r_{n,m} + \nu\rho_{n,m}$$

At time t = n + 1....

Overview of the Main Results

- **1** Popularity ranking + search cost \Rightarrow *rich get richer*
- 2 Personalization + preferences for like-minded news \Rightarrow *belief polarization*
- \Rightarrow High market concentration & Ideological Segregation
- 3 Advantage of the fewer: fewer websites with incorrect info each attract more traffic ⇒ gain a higher rank ⇒ attract even more traffic.
- \Rightarrow Rationale of why "fake news" may thrive with algorithmic gatekeepers
- Summation: Setting the setting \Rightarrow Setsion and Setting the setting \Rightarrow Setsion and Setting the settin
 - Sub-optimal on common value issues (e.g., side effects of a vaccine)
 - **O** Useful on private value issues (e.g., attributes of a commercial product).

Extensions

- Domain Bias ($M' \subset M$): main dynamics still apply.
- Non random search order: path dependence

Policy Implications

Our framework \Rightarrow No incentives to strategically manipulate search results:

- To increase their advertising profits (as in De Corniere & Taylor 2014; Burguet et al. 2015; Hagiu and Jullien 2014)
- To influence election outcomes (as in Epstein & Robertson, 2015)

Yet, even in this "best scenario " \Rightarrow subtle distortions

Rationale for public intervention:

- Rich-get-richer \Rightarrow competition authorities
- Belief polarization \Rightarrow communication authorities